Superhydrophilic Triazine‐Based Covalent Organic Frameworks via Post‐Modification of FeOOH Clusters for Boosted Photocatalytic Performance

Author:

Wang Yue1,Deng Yang1,Xia Hong1,Zhang Ruizhong1,Liu Jia1,Zhang Haixia2,Sun Yajing1,Zhang Zhen1ORCID,Lu Xiaoquan3

Affiliation:

1. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science Tianjin University Tianjin 300072 P. R. China

2. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China

3. Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China

Abstract

AbstractThe triazine‐based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen‐rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron‐hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post‐synthetic modification strategy to fabricate superhydrophilic tCOF‐based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz‐FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz‐FeOOH with good hydrophilic properties. The well‐defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz‐FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF‐based hydrophilic functional materials for a wide range of practical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3