Elucidating the Microenvironment Structure‐Activity Relationship of Cu Single‐Site Catalysts via Unsaturated N,O‐Coordination for Singlet Oxygen Production

Author:

Li Pengfei12,Deng Yang1,Wang Haiyuan3,Luo Yali1,Che Yin2,Bian Ruijuan1,Gao Ruoyun1,Wu Xianfeng1,Zhang Zhen3ORCID,Wu Xu12

Affiliation:

1. College of Chemistry Taiyuan University of Technology Taiyuan 030024 China

2. College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan 030024 China

3. Key Laboratory of Organic Integrated Circuit Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China

Abstract

AbstractUnderstanding the microenvironment structure‐activity relationship of singlet‐atom catalysts (SACs) is imperative for the development of high‐performance photocatalytic devices. However, the challenge remains to finely regulate the coordination microenvironment of SACs. Herein, single‐atom Nx─Cu─O4‐x (x = 1–4) photocatalysts with different coordination environments are successfully prepared based on pre‐design reticular supramolecular covalent organic frameworks (COFs) for direct photocatalytic 1O2 production from O2. The results show that the high activity of Cu SACs is closely related to the N,O‐coordination microenvironment, which is primarily ascribed to the different electrophilicity of the N, O atom. The electron configuration of N3‐Cu‐O1 endows photocatalyst enhanced charge transfer capability and the nearest D‐band center to the Fermi level. The “end‐on” type adsorption configuration of O2 at the N3─Cu─O1 active site can promote the breaking of Cu─O bonds rather than O─O bonds. As a result, the N3‐Cu‐O1@COF photocatalyst exhibits the most optimal formation and desorption energies for intermediates •OOH, which provides an advantageous reaction pathway with fewer steps and a lower barrier for 1O2 production. This work highlights the structure‐activity relationship of SACs for long‐term applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3