Affiliation:
1. Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto‐Photoelectrical Composite and Interface Science the State Key Laboratory for Advanced Metals and Materials School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China
Abstract
AbstractInterface strain significantly affects the band structure and electronic states of metal‐nanocrystal‐2D‐semiconductor heterostructures, impacting system performance. While transmission electron microscopy (TEM) is a powerful tool for studying interface strain, its accuracy may be compromised by sample overlap in high‐resolution images due to the unique nature of the metal‐nanocrystals‐2D‐semiconductors heterostructure. Utilizing digital dark‐field technology, the substrate influence on metal atomic column contrasts is eliminated, improving the accuracy of quantitative analysis in high‐resolution TEM images. Applying this method to investigate Pt on MoS2 surfaces reveals that the heterostructure introduces a tensile strain of ≈3% in Pt nanocrystal. The x‐directional linear strain in Pt nanocrystals has a periodic distribution that matches the semi‐coherent interface between Pt nanocrystals and MoS2, while the remaining strain components localize mainly on edge atomic steps. These results demonstrate an accurate and efficient method for studying interface strain and provide a theoretical foundation for precise heterostructure fabrication.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献