Automated High‐Throughput Fatigue Testing of Freestanding Thin Films

Author:

Barrios Alejandro1,Kunka Cody1,Nogan John1,Hattar Khalid12,Boyce Brad L.1ORCID

Affiliation:

1. Center for Integrated Nanotechnologies Sandia National Laboratories Albuquerque NM 87185 USA

2. Department of Nuclear Engineering University of Tennessee Knoxville TN 37996 USA

Abstract

AbstractMechanical testing at small length scales has traditionally been resource‐intensive due to difficulties with meticulous sample preparation, exacting load alignments, and precision measurements. Microscale fatigue testing can be particularly challenging due to the time‐intensive, tedious repetition of single fatigue experiments. To mitigate these challenges, this work presents a new methodology for the high‐throughput fatigue testing of thin films at the microscale. This methodology features a microelectromechanical systems‐based Si carrier that can support the simultaneous and independent fatigue testing of an array of samples. To demonstrate this new technique, the microscale fatigue behavior of nanocrystalline Al is efficiently characterized via this Si carrier and automated fatigue testing with in situ scanning electron microscopy. This methodology reduces the total testing time by an order of magnitude, and the high‐throughput fatigue results highlight the stochastic nature of the microscale fatigue response. This manuscript also discusses how this initial capability can be adapted to accommodate more samples, different materials, new geometries, and other loading modes.

Funder

U.S. Department of Energy

Basic Energy Sciences

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plane Stress Fracture Toughness Testing of Freestanding Ultra‐Thin Nanocrystalline Gold Films on Water Surface;Small Methods;2024-01-26

2. Creep-dominated fatigue of freestanding gold thin films studied by bulge testing;Materials Science and Engineering: A;2023-11

3. Innovative MEMS Stage for Automated Micromechanical Testing;2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3