Oxide‐Halide Perovskite Composites for Simultaneous Recycling of Lead Zirconate Titanate Piezoceramics and Methylammonium Lead Iodide Solar Cells

Author:

Tabeshfar Mohadeseh12ORCID,Nelo Mikko12ORCID,Anandakrishnan Sivagnana Sundaram12ORCID,Siddiqui Maliha3ORCID,Peräntie Jani1ORCID,Tofel Pavel4ORCID,Jantunen Heli1ORCID,Juuti Jari1ORCID,Bai Yang1ORCID

Affiliation:

1. Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering University of Oulu Oulu FI‐90570 Finland

2. Infotech Institute University of Oulu Oulu FI‐90570 Finland

3. CEITEC – Central European Institute of Technology Brno University of Technology Purkynova 123 Brno 61200 Czech Republic

4. Deptartment of Physics, Faculty of Electrical Engineering and Communication Brno University of Technology Brno CZ‐61600 Czech Republic

Abstract

AbstractGlobal concerns over energy availability and the environment impose an urgent requirement for sustainable manufacturing, usage, and disposal of electronic components. Piezoelectric and photovoltaic components are being extensively used. They contain the hazardous element, Pb (e.g., in widely used and researched Pb(Zr,Ti)O3 and halide perovskites), but they are not being properly recycled or reused. This work demonstrates the fabrication of upside‐down composite sensor materials using crushed ceramic particles recycled from broken piezoceramics, polycrystalline halide perovskite powder collected from waste dye‐sensitized solar cells, and crystal particles of a Cd‐based perovskite composition, C6H5N(CH3)3CdBr3xCl3(1–x). The piezoceramic and halide perovskite particles are used as filler and binder, respectively, to show a proof of concept for the chemical and microstructural compatibility between the oxide and halide perovskite compounds while being recycled simultaneously. Production of the recycled and reusable materials requires only a marginal energy budget while achieving a very high material densification of >92%, as well as a 40% higher piezoelectric voltage coefficient, i.e., better sensing capability, than the pristine piezoceramics. This work thus offers an energy‐ and environmentally friendly approach to the recycling of hazardous elements as well as giving a second life to waste piezoelectric and photovoltaic components.

Funder

Infotech Oulu

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3