Affiliation:
1. Mechanical Engineering Department, School of Engineering, Institute of Technology Nirma University Ahmedabad Gujarat India
Abstract
AbstractThis survey article highlights the difficulties in the field maintenance of telecommunication towers. It critically analyses the main features of the deployment of robots to maintain telecommunication towers. The growing demand for mobile connectivity poses the need for more towers, and the subsequent problem of network maintenance becomes more critical. Most tower maintenance is required work at height; therefore, height‐related risks are more frequent. A rigorous review is conducted, and the growth of the telecommunications network and key on‐site maintenance challenges are analyzed. Despite numerous challenges, these towers are maintained manually by riggers (certified climbers) worldwide. It raises the question, Is it possible to implement automation by robots for the maintenance of telecommunications towers? The feasibility analysis to deploy the robots is conducted systematically. To access the tower through a robot, detailed information on the type of towers, the climbing arrangements available on the existing towers, and the necessary operations to be carried out at the height is collected. A critical analysis of the climbing robots currently available in the literature, their grasping technology, and control algorithms is performed. The opinion of experts in the telecommunication industry is very helpful in identifying the requirements of robotic systems. The design attributes especially needed for the climbing robot, and the execution of the maintenance in height are highlighted. Due justification is given for deploying robots for field maintenance of telecom towers. The recommended methodology for designing an automation system helps research in the field of maintenance of telecom towers through robots, which could bring a remarkable solution to the telecom sector.
Subject
Computer Science Applications,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献