Multiobjective trajectory optimization of the wall‐building robot based on RBF–NSGA‐II in an uncertain viscoelastic contact environment

Author:

Shi Qingyi12,Wang Zhaohui12,Ke Xilin2,Wang Zhongren3,Gao Quanjie1,Fan Yiwei2,Lei Bin12,Wu Pengmin4

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education Wuhan University of Science and Technology Wuhan China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering Wuhan University of Science and Technology Wuhan China

3. Xiangyang Key Laboratory of Intelligent Manufacturing and Machine Vision Hubei University of Arts and Science Xiangyang China

4. Coking Engineering Construction Standards Institute MCC5 Group Shanghai Corporation Limited Shanghai China

Abstract

AbstractTo solve the problem of poor masonry quality of traditional wall‐building robots in an uncertain viscoelastic contact environment while reducing energy consumption, reducing contact forces with the environment, and improving work efficiency and smoothness, a segmented multiobjective trajectory optimization method is proposed based on radial basis function (RBF) and nondominated sorting genetic algorithm II (NSGA‐II). The method divides the motion trajectory into the free motion segment and the masonry segment. In the masonry segment, the compensation variable is introduced at the brick‐stopping position, and the values of design variables are obtained by Latin hypercube sampling. The relationship between the objective functions and the design variables is established by using an RBF substitution model. The optimal design is carried out by the NSGA‐II, and the compromise solution is obtained by using the technique for order preference by similarity to an ideal solution algorithm. On this basis, a multiobjective trajectory optimization method based on seven times nonuniform B‐spline curves is proposed for the free motion segment. According to the performance indicators, such as operation efficiency, trajectory smoothness, and energy consumption, the compromise solution is again sought and obtained. Finally, the proposed trajectory optimization method is compared with the standard gate‐shaped trajectory planning method. The results show that after trajectory optimization, the masonry efficiency of the wall‐building robot is improved by 28.36%, and the energy consumption and trajectory smoothness are reduced by 28.68% and 93.81%, respectively. At the same time, the contact force with the environment is reduced by 12.26%, and the masonry error is reduced from 2.67 to 0.13 mm. These results can contribute to the construction of walls and improve the masonry quality of bricks while considering other performance indicators.

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3