Cross‐layer all‐interface defect passivation with pre‐buried additive toward efficient all‐inorganic perovskite solar cells

Author:

Wang Qiurui1,Zhu Jingwei2,Zhao Yuanyuan1ORCID,Chang Yijie1,Hao Nini1,Xin Zhe1,Zhang Qiang1,Chen Cong2,Huang Hao3,Tang Qunwei4

Affiliation:

1. College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao China

2. College of Materials Science and Engineering Sichuan University Chengdu China

3. Guangxi Key Laboratory of Processing for Non‐Ferrous Metals and Featured Materials, School of Resources, Environment and Materials Guangxi University Nanning China

4. Institute of Carbon Neutrality, College of Chemical and Biological Engineering Shandong University of Science and Technology Qingdao China

Abstract

AbstractThe buried interface in the perovskite solar cell (PSC) has been regarded as a breakthrough to boost the power conversion efficiency and stability. However, a comprehensive manipulation of the buried interface in terms of the transport layer, buried interlayer, and perovskite layer has been largely overlooked. Herein, we propose the use of a volatile heterocyclic compound called 2‐thiopheneacetic acid (TPA) as a pre‐buried additive in the buried interface to achieve cross‐layer all‐interface defect passivation through an in situ bottom‐up infiltration diffusion strategy. TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film. Owing to this versatility, TPA‐tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long‐term stability. This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3