High Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cell with Interface Dipole Layer

Author:

Heo Jihyeon12,Prayogo Juan Anthony3,Lee Seok Woo3,Park Hansol12,Muthu Senthilkumar12,Hong JeeHee12,Kim Haeun12,Kim Young‐Hoon4,Whang Dong Ryeol5,Chang Dong Wook3,Park Hui Joon126ORCID

Affiliation:

1. Department of Organic and Nano Engineering Hanyang University Seoul 04763 Republic of Korea

2. Human‐Tech Convergence Program Hanyang University Seoul 04763 Republic of Korea

3. Department of Industrial Chemistry and CECS Research Institute Pukyong National University Busan 48513 Republic of Korea

4. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea

5. Department of Advanced Materials Hannam University Daejeon 34054 Republic of Korea

6. Department of Semiconductor Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractWide‐bandgap perovskite solar cells (PSCs) with high open‐circuit voltage (Voc) represent a compelling and emerging technological advancement in high‐performing perovskite‐based tandem solar cells. Interfacial engineering is an effective strategy to enhance Voc in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n‐type quinoxaline‐phosphine oxide‐based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers. Their strong dipole effect leads to appropriate energy level alignment by tuning the work function of the Ag electrode to form an ohmic contact and enhance the built‐in potential within the device, thereby improving charge‐carrier transport and mitigating charge recombination. The organic interfacial layer‐modified wide‐bandgap PSCs exhibit a high Voc of 1.31 V (deficit of <0.44 V) and a power conversion efficiency (PCE) of 20.3%, significantly improved from the device without an interface dipole layer (Voc of 1.26 V and PCE of 16.7%). Furthermore, the hydrophobic characteristics of the small molecules contribute to improved device stability, retaining 95% of the initial PCE after 500 h in ambient air.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3