Applications of Carbon‐Based Materials for Improving the Performance and Stability of Perovskite Solar Cells

Author:

Patel Krina1,Prochowicz Daniel2,Akin Seckin3,Kalam Abul4,Tavakoli Mohammad Mahdi5,Yadav Pankaj6ORCID

Affiliation:

1. Department of Physics School of Energy Technology Pandit Deendayal Energy University Gandhinagar Gujarat 382 007 India

2. Institute of Physical Chemistry Polish Academy of Sciences 01-224 Warsaw Poland

3. Department of Metallurgical and Materials Engineering Karamanoglu Mehmetbey University 70200 Karaman Turkey

4. Department of Chemistry Faculty of Science King Khalid University Abha 61 413 Saudi Arabia

5. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA 02139 USA

6. Department of Solar Energy School of Energy Technology Pandit Deendayal Energy University Gandhinagar Gujarat 382 007 India

Abstract

Organic–inorganic hybrid perovskite solar cells (PSCs) attract many researchers in the field of photovoltaic because of their high‐power conversion efficiency and low‐cost manufacturing. However, improper interfacial charge transfer, perovskite degradation, and poor stability are major concerns for their commercialization and scale‐up. Significant efforts have been made in recent years mainly by employing different strategies such as optimizing fabrication, developing novel materials, use of additives, and an interfacial layer in PSCs. Nowadays, carbon materials are widely recognized as promising candidates for alternative usage in PSCs because of their cost effectiveness, high conductivity, appropriate work function (5.0 eV), and low‐temperature sintering process. In addition, the highly hydrophobic nature of the carbon‐based materials prevents moisture penetration into the perovskite layer, resulting in enhanced stability. This review shows how effectively carbon‐based materials can improve the performance of PSCs. First, the different carbon materials such as graphene and its derivatives, fullerenes and its derivatives, carbon quantum dots, and carbon nanotubes are described. Subsequently, the role of these carbon‐based materials employed in electron‐transport layers, hole‐transport layers, and perovskite layers in PSCs is discussed. Thus, this review highlights the recent advancements made in carbon‐based PSCs and their role in improving the performance of PSCs.

Funder

King Khalid University

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3