Densely Packed Fiber Electrodes Composed of Liquid Crystalline MXenes for High‐Areal‐Density Supercapacitors

Author:

Kim Joonhui1,Kim Seulgi2,Yuk Seoyeon2,Hwang Hyewon2,Song Sung Ho3,Byun Segi4,Lee Dongju25ORCID

Affiliation:

1. Center for R&D Performance Diffusion Korea Institute of Science & Technology Evaluation and Planning (KISTEP) 1339 Wonjung-ro, Maengdong-myeon Eumseong-gun Chungcheongbuk-do 27740 Republic of Korea

2. Department of Urban, Energy, and Environmental Engineering Chungbuk National University Chungdae-ro 1, Seowon-Gu Cheongju Chungbuk 28644 Republic of Korea

3. Division of Advanced Materials Engineering Kongju National University Cheonan-si Chungnam 330-717 Republic of Korea

4. High Temperature Energy Conversion Laboratory Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea

5. Department of Advanced Materials Engineering Chungbuk National University Chungdae-ro 1, Seowon-Gu Cheongju Chungbuk 28644 Republic of Korea

Abstract

Because electrode structure is a crucial determinant of supercapacitor performance, there are multiple studies of supercapacitor electrodes with various structures. Here, experimental observations of the diameter‐dependent supercapacitor performance of a liquid crystalline (LC)‐assisted MXene fiber‐based electrode produced through a wet‐spinning process is reported. It is shown that Ti3C2Tx nanosheets are highly dispersed in water and do not form aggregates or undergo phase separation. MXene dispersion exhibits the typical shear thinning behavior of liquid crystals above the critical mass fraction. Various MXene fibers derived from needles of different diameters can be produced using one method. LC‐assisted MXene fibers are characterized by a high electrical conductivity of up to 2012.27 S cm−1. Furthermore, the optimized MXene fiber‐based device has an areal capacitance of up to ≈6.82 F cm−2, indicating the utility of LC‐assisted MXene fibers in fiber‐shaped supercapacitor devices. The synthetic method has considerable advantages for applications in high‐performance supercapacitors with both stable device operation and high areal capacitance.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3