Strategy for improving the capacity and rate performance of LiNixCoyMn1−xy electrode using Ti3C2Tx MXene additives

Author:

Ahn Yunhee1,Kim Seulgi1,Yuk Seoyeon1,Hong Seokjae23,Kim Hyungsub2,Lee Dongju1ORCID

Affiliation:

1. Department of Urban, Energy, and Environmental Engineering Chungbuk National University Cheongju Republic of Korea

2. Neutron Science Division Korea Atomic Energy Research Institute (KAERI) Daejeon Republic of Korea

3. Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea

Abstract

AbstractWith the expanding range of applications for lithium‐ion batteries, a great deal of research is being conducted to improve their capacity, stability, and charge/discharge rates. This study was performed to investigate the effects of MXene, which has a large surface area and metallic conductivity, as a conductive additive to the cathode, on electrochemical performance. The two‐dimensional material MXene constructs a conductive network with zero‐dimensional carbon black in plane‐to‐point mode to improve conductivity and contact area with active materials, thereby facilitating fast charge transfer. The conductive network reduces the internal resistance and polarization of the cathode and aids the diffusion of electrons. The electrode containing an appropriate amount of MXene showed improved rate performance, high discharge capacity (123.9 mAh g−1 at 4 C), and excellent cycle stability at a high scan rate (125.8 mAh g−1 at 2 C after 150 cycles) compared to pristine electrodes. Based on these results, Ti3C2Tx MXene is a promising conductive additive in the battery field.

Funder

National Research Foundation of Korea

National Research Council of Science and Technology

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3