In Situ Atomic Force Microscopy and X‐ray Computed Tomography Characterization of All‐Solid‐State Lithium Batteries: Both Local and Overall

Author:

Chen Weiheng12,Chen Xiaoping2,Chen Wenhua1,Jiang Zhongqing3ORCID

Affiliation:

1. National and Local Joint Engineering Research Center of Reliability Analysis and Testing for Mechanical and Electrical Products Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 P. R. China

2. Vehicle Energy and Safety Laboratory Department of Mechanical Engineering Ningbo University of Technology Ningbo 315336 P. R. China

3. Department of Physics Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 P. R. China

Abstract

All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3