Molecular insights into the salt stress response of Pearl millet (Pennisetum glaucum): Pathways, differentially expressed genes and transcription factors

Author:

Dhawi Faten1ORCID

Affiliation:

1. Department of Agricultural Biotechnology, College of Agricultural and Food Sciences King Faisal University Al‐Ahsa Saudi Arabia

Abstract

AbstractIntroductionPearl millet (Pennisetum glaucum) plays a crucial role as a cereal crop in arid and semi‐arid regions, where it confronts the formidable challenge of salt stress.Materials and MethodsTo unravel the underlying molecular mechanisms that underpin its salt stress resilience, we subjected 14‐day‐old seedlings to three distinct groups: Control, 75 mM NaCl and 150 mM NaCl. These pots received daily irrigation with their respective treatment solutions for a duration of 7 days. Following this week‐long treatment, we measured plant chlorophyll content, as well as the fresh and dry weights of shoots and roots. It became evident that the saline treatment, particularly in the 150 mM NaCl group, had a more pronounced impact on both weight and chlorophyll content in comparison to the control group, surpassing the effects observed in the 75 mM NaCl group. Subsequently, we conducted RNA sequence analysis on the leaves of Pearl millet from both the control and 150 mM NaCl‐treated groups.ResultsThe results revealed that 27.6% of Pennisetum glaucum genes exhibited differential expression, with 3246 genes being upregulated and 7408 genes downregulated when compared to the control group. Principal component analysis underscored distinct variations in gene expression patterns between the control and salt‐stressed groups. Pathway analysis sheds light on the upregulated differentially expressed genes (DEGs), highlighting their involvement in crucial pathways such as phytyl‐PP biosynthesis, lysine degradation, glutamate biosynthesis, nitrate assimilation and DLO biosynthesis. Conversely, the downregulated DEGs were associated with pathways like coumarins biosynthesis, pinobanksin biosynthesis, UDP‐ d‐glucuronate biosynthesis and cholesterol biosynthesis, among others. Furthermore, our transcription factor analysis unveiled specific families associated with the salt stress response, including bHLH, ERF, NAC, WRKY, bZIP, MYB and HD‐ZIP.ConclusionsThese findings represent a significant advancement in our comprehension of Pearl millet's capacity to withstand salt stress and provide potential targets for the development of salt‐resistant crops, contributing to the advancement of sustainable agriculture in regions affected by salinity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3