Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L.

Author:

Anwar Zunaira1,Ijaz Aqsa1,Ditta Allah12ORCID,Wang Baohua3,Liu Fang4ORCID,Khan Sana Muhy-Ud-Din1,Haidar Sajjad12,Hassan Hafiz Mumtaz12,Khan Muhammad Kashif Riaz12ORCID

Affiliation:

1. Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan

2. Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan

3. School of Life Sciences, Nantong University, Nantong 226000, China

4. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China

Abstract

The changing climate is intensifying salt stress globally. Salt stress is a menace to cotton crop quality and yield. The seedling, germination, and emergence phases are more prone to the effects of salt stress than other stages. Higher levels of salt can lead to delayed flowering, a reduced number of fruiting positions, shedding of fruits, decreased boll weight, and yellowing of fiber, all of which have an adverse effect on the yield and quality of the seed cotton. However, sensitivity toward salt stress is dependent on the salt type, cotton growth phase, and genotype. As the threat of salt stress continues to grow, it is crucial to gain a comprehensive understanding of the mechanisms underlying salt tolerance in plants and to identify potential avenues for enhancing the salt tolerance of cotton. The emergence of marker-assisted selection, in conjunction with next-generation sequencing technologies, has streamlined cotton breeding efforts. This review begins by providing an overview of the causes of salt stress in cotton, as well as the underlying theory of salt tolerance. Subsequently, it summarizes the breeding methods that utilize marker-assisted selection, genomic selection, and techniques for identifying elite salt-tolerant markers in wild species or mutated materials. Finally, novel cotton breeding possibilities based on the approaches stated above are presented and debated.

Funder

The National Key R&D Program of China

Pakistan Science Foundation

National Natural Science Foundation of China

the Ministry of Planning, Development & Special Initiatives

International Foundation For Science

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3