Normalized power priors always discount historical data

Author:

Pawel Samuel1ORCID,Aust Frederik2ORCID,Held Leonhard1ORCID,Wagenmakers Eric‐Jan2ORCID

Affiliation:

1. Department of Biostatistics University of Zurich Zurich Switzerland

2. Psychological Methods University of Amsterdam Amsterdam The Netherlands

Abstract

Power priors are used for incorporating historical data in Bayesian analyses by taking the likelihood of the historical data raised to the power as the prior distribution for the model parameters. The power parameter is typically unknown and assigned a prior distribution, most commonly a beta distribution. Here, we give a novel theoretical result on the resulting marginal posterior distribution of in case of the normal and binomial model. Counterintuitively, when the current data perfectly mirror the historical data and the sample sizes from both data sets become arbitrarily large, the marginal posterior of does not converge to a point mass at but approaches a distribution that hardly differs from the prior. The result implies that a complete pooling of historical and current data is impossible if a power prior with beta prior for is used.

Funder

H2020 European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Bayesian statistics in confirmatory clinical trials in the regulatory setting: a tutorial review;BMC Medical Research Methodology;2024-05-07

2. A review of dynamic borrowing methods with applications in pharmaceutical research;Brazilian Journal of Probability and Statistics;2024-03-01

3. Power priors for replication studies;TEST;2023-09-21

4. Bayesian Detection of Bias in Peremptory Challenges Using Historical Strike Data;The American Statistician;2023-08-21

5. Being Bayesian in the 2020s: opportunities and challenges in the practice of modern applied Bayesian statistics;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3