Getting allometry right at the Oak Ridge free‐air CO2 enrichment experiment: Old problems and new opportunities for global change experiments

Author:

Norby Richard J.1ORCID,Warren Jeffrey M.1ORCID,Iversen Colleen M.1ORCID,Walker Anthony P.1ORCID,Childs Joanne1ORCID

Affiliation:

1. Environmental Sciences Division, Oak Ridge National Laboratory Oak Ridge Tennessee USA

Abstract

Societal Impact StatementFree‐air CO2 enrichment (FACE) experiments provide essential data on forest responses to increasing atmospheric CO2 for evaluations of climate change impacts on humanity. Understanding and reducing the uncertainty in the experimental results is critical to ensure scientific and public confidence in the models and policy initiatives that derive therefrom. One source of uncertainty is the estimation of tree biomass using mathematical relationships between biomass and easily obtained and non‐destructive measurements (allometry). We evaluated the robustness of the allometric relationships established at the beginning of a FACE experiment and discuss the challenges and opportunities for the new generation of FACE experiments.Summary Long‐term field experiments to elucidate forest responses to rising atmospheric CO2 concentration require allometric equations to estimate tree biomass from non‐destructive measurements of tree size. We analyzed whether the allometric equations established at the beginning of a free‐air CO2 enrichment (FACE) experiment in a Liquidambar styraciflua plantation were still valid at the end of the 12 year experiment. Aboveground woody biomass was initially predicted by an equation that included bole diameter, taper, and height, assuming that including taper and height as predictors would accommodate changes in tree structure that might occur over time and in response to elevated CO2. At the conclusion of the FACE experiment, we harvested 23 trees, measured dimensions and dry mass of boles and branches, and extracted and measured the woody root mass of 10 trees. Although 10 of the harvested trees were larger than the trees used to establish the allometric relationship, measured aboveground woody biomass was well predicted by the original allometry. The initial linear equation between bole basal area and woody root biomass underestimated final root biomass by 28%, but root biomass was just 21% of total wood mass, and errors in aboveground and belowground estimates were offsetting. The allometry established at the beginning of the experiment provided valid predictions of tree biomass throughout the experiment. New allometric approaches using terrestrial laser scanning should reduce an important source of uncertainty in decade‐long forest experiments and in assessments of centuries‐long forest biomass accretion used in evaluating carbon offsets and climate mitigation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3