Variable selection with LASSO regression for complex survey data

Author:

Iparragirre Amaia1ORCID,Lumley Thomas2ORCID,Barrio Irantzu13ORCID,Arostegui Inmaculada13ORCID

Affiliation:

1. Department of Mathematics University of the Basque Country UPV/EHU Leioa 48940 Spain

2. Department of Statistics University of Auckland Auckland 1142 New Zealand

3. BCAM ‐ Basque Center for Applied Mathematics Bilbao 48009 Spain

Abstract

Variable selection is an important step to end up with good prediction models. LASSO regression models are one of the most commonly used methods for this purpose, for which cross‐validation is the most widely applied validation technique to choose the tuning parameter . Validation techniques in a complex survey framework are closely related to “replicate weights”. However, to our knowledge, they have never been used in a LASSO regression context. Applying LASSO regression models to complex survey data could be challenging. The goal of this paper is twofold. On the one hand, we analyze the performance of replicate weights methods to select the tuning parameter for fitting LASSO regression models to complex survey data. On the other hand, we propose new replicate weights methods for the same purpose. In particular, we propose a new design‐based cross‐validation method as a combination of the traditional cross‐validation and replicate weights. The performance of all these methods has been analyzed and compared by means of an extensive simulation study to the traditional cross‐validation technique to select the tuning parameter for LASSO regression models. The results suggest a considerable improvement when the new proposal design‐based cross‐validation is used instead of the traditional cross‐validation.

Funder

Agencia Estatal de Investigación

Ministerio de Ciencia e Innovación

Eusko Jaurlaritza

Euskal Herriko Unibertsitatea

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3