Mechanisms of cell death induced by hexabromocyclododecane (HBCD) involves apoptosis, autophagy, and ER stress

Author:

Mohammed Noor A.12,Lewis Kirstie3,Hodges Nikolas1,Michelangeli Francesco13ORCID

Affiliation:

1. School of Biosciences University of Birmingham, Edgbaston Birmingham UK

2. Department of Biology University of Duhok Duhok Iraq

3. Chester Medical School University of Chester Chester UK

Abstract

AbstractHexabromocyclododecane (HBCD), was a widely utilized brominated flame retardant, commonly found in a wide range of household products. The pervasiveness of HBCD has identified the presence of this chemical in foods and in human tissues. Therefore, HBCD has been identified as a chemical of concern. The aim was to investigate the degree of cytotoxicity of HBCD in a range of cell lines derived from different tissues, (including hematopoietic, nerve, liver, and kidney‐derived cells) with a view of determining any differential cell type effects. In addition, this study also investigated the mechanism(s) by which HBCD could cause cell death. The results showed that HCBD was considerably more toxic to leukocyte‐derived (RBL2H3) and neuronal‐derived (SHSY‐5Y) cells with LC50 values of 1.5 and 6.1 µM, respectively, compared to cells derived from liver (HepG2) and kidney (Cos‐7), which had LC50 values of 28.5 and 17.5 µM, respectively. A detailed investigation of the mechanism(s) of cell death showed that HBCD caused, at least in part, Ca2+‐dependent cell death, caspase‐activated apoptosis, and autophagy, but there was little evidence for either necrosis or necroptosis occurring. Furthermore, it was shown that HBCD can also induce the ER stress response which is a known trigger of both apoptosis and autophagy and therefore this could be one of the crucial events by which cell death is initiated. As each of these cell death mechanisms was investigated in at least two different cell lines and no differences were identified, it is likely that the mode of action is not cell‐type specific.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3