Bedload tracing with RFID tags in gravel‐bed rivers: Review and meta‐analysis after 20 years of field and laboratory experiments

Author:

Liébault Frédéric1ORCID,Piégay Hervé2ORCID,Cassel Mathieu2ORCID,Arnaud Fanny2ORCID

Affiliation:

1. Université Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE Grenoble France

2. Université de Lyon, EVS, CNRS‐UMR 5600, ENS Lyon France

Abstract

AbstractSoon after their first deployment in rivers in the early 2000s, RFID tags rapidly became the reference technology for bedload tracing in rivers. We can estimate from the literature that during the last 20 years, more than 30,000 RFID tracers have been injected in gravel‐bed rivers all around the world to study bedload transport. Many field experiments have been reported in a great diversity of fluvial environments, complemented by many laboratory experiments and methodological developments. This paper proposes a review of these works, notably based on the compilation of more than 350 RFID surveys, complemented by 97 magnetic surveys, for a total of 125 study sites. The meta‐analysis of this database shows that RFID tracers have improved our understanding of sediment transport in fluvial environments with rapid bedload dispersion. It is also shown that central positions of tracer plumes are moving faster over time than tracer leading fronts, as attested by a general relation between maximum and mean distances of transport. The most recent methodological developments based on the use of active UHF RFID tags show that it is now possible to conduct efficient bedload tracing experiments not only in small streams, but also in large gravel‐bed rivers or very active braided channels. Other addressed topics include RFID deployment and survey in river channels, controlling factors of tracer mobility (flow conditions, grain‐size and shape, channel morphology), bedload monitoring approaches using RFID tracers, and applications of RFID tracers for evaluating human effects on bedload transport. Key challenges of bedload tracing with RFID tags are also proposed.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3