Exogenous nitric oxide treatment delays the senescence of postharvest mung bean sprouts by regulating ascorbic acid metabolism

Author:

Wang Hanbo1ORCID,Qiu Mengyu1,Zhang Bingqi1,Zhang Liang1,Wang Dan1,Sun Yali1

Affiliation:

1. College of life science Henan Normal University Xinxiang PR China

Abstract

AbstractBACKGROUNDThis study evaluated the effects of nitric oxide (NO) treatment on ascorbic acid (AsA) metabolism and mung bean sprout quality. It examined changes in the AsA content, enzyme activity associated with AsA metabolism, antioxidant capacity, cell membrane composition, and cellular structure to clarify the effects of NO on mung bean sprouts.RESULTSNitric oxide treatment preserved mung bean sprout quality by enhancing significantly the activity of enzymes involved in the l‐galactose pathway (including guanosine diphosphate (GDP)glutathione (‐d‐mannose pyrophosphorylase, GDP‐mannose‐3′,5′‐epimerase, GDP‐l‐galactose phosphorylase, l‐galactose‐1‐phosphate phosphatase, l‐galactose dehydrogenase, and l‐galactose‐1,4‐lactone dehydrogenase) and the AsA‐glutathione (GSH)(Beijing Solarbio Science and Technology Co.,Ltd., Beijing, China) cycle (including ascorbate peroxidase, ascorbic acid oxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase) during the germination and storage stage. Increased enzyme activity led to an increase in AsA content and enhanced antioxidant capacity, and reduced the membrane lipid damage in mung bean sprouts. This was demonstrated by higher levels of DPPH radical scavenging capacity, unsaturated fatty acids and phospholipids, along with lower levels of hydrogen peroxide, superoxide anions, and malondiadehyde, in NO‐treated mung bean sprouts. Scanning electron microscopy also revealed that NO treatment maintained the integrity of the cellular structure of the mung bean sprouts.CONCLUSIONNitric oxide accelerates AsA metabolism effectively by regulating the biosynthesis and regeneration of AsA in mung bean sprouts. These changes increased AsA levels, alleviated membrane lipid damage, delayed senescence, and maintained the quality of mung bean sprouts during storage. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3