Selective thermal recycling for graphene growth on natural substrates: A comparative study on life cycle assessment, energy consumption, and mechanical performance in recompounding

Author:

Baskan‐Bayrak Havva1,Kocanali Atakan12,Saner Okan Burcu12ORCID

Affiliation:

1. Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence Istanbul Turkey

2. Faculty of Engineering and Natural Sciences, Materials Science and Nanoengineering Sabanci University Istanbul Turkey

Abstract

AbstractManufacturing of carbon‐based materials from waste thermoplastics is a keystone to reduce adverse environmental impacts. There are numerous attempts for sustainable graphene manufacturing from various waste sources by thermal treatment but there is no clear distinction on the effective conversion process by addressing reliable CO2 footprints. This study provides a comprehensive benchmarking study on the conversion of waste polypropylene plastics coming from yogurt containers into graphene on the substrate of talc by applying two upcycling techniques of catalytic carbonization (CC) and flash pyrolysis (FP) by comparing energy and speed of the processes and a dimensional stability and physical characteristics of the produced graphene substances by adopting a comparative life cycle assessment. FP led to the sphericalization of graphenes due to fast dehydration, cross‐linking, and carbonization of aromatic structures. On the other hand, gradual heating in CC caused the formation of tubular‐like graphene structures. In addition, FP became advantageous by resulting in 52% of CO2 emission compared with CC process. On the other hand, graphenes separated from talcs exhibited a remarkable 70% reduction in global warming potential compared with conventional graphene production from graphite. In order to complete the value chain and circularity, the mechanical performance of two different hybrid additives produced by selective thermal recycling in recompounding with copolymer polypropylene was examined, and additives from CC enhanced the flexural and tensile properties two times better than the one from FP. With this study, it becomes possible to compare analysis of graphene growth on natural substrates by exploring life cycle assessment, energy consumption, and mechanical performance with selective thermal recycling and recompounding.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3