Enhanced complete ensemble EMD with superior noise handling capabilities: A robust signal decomposition method for power systems analysis

Author:

Calvo Manuel Soto1ORCID,Lee Han Soo2ORCID

Affiliation:

1. Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering Hiroshima University Higashi‐Hiroshima Japan

2. Center for the Planetary Health and Innovation Science (PHIS) The IDEC Institute, Hiroshima University Higashi‐Hiroshima Japan

Abstract

AbstractSignal decomposition is crucial in several domains, particularly in the dissection of complex signals present in electrical power systems. Understanding the oscillations and patterns within these signals can significantly influence energy resource management, grid stability, and efficient system operation. This paper presents an advanced enhanced decomposition method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to mitigate the inherent drawbacks of the conventional CEEMDAN and its improved version. Unlike CEEMDAN's generalized noise approach, the proposed method introduces adaptive noise, enhancing target signal noise handling by incorporating a tailored filtering and updating process after each iteration. This leads to more accurate signal decomposition compared to traditional methods. Comprehensive tests were conducted using artificially generated signals characterized by mode mixing, varying frequency oscillations, complex real‐world electrical demand signals, generator axis vibrations and partial discharge signals. The results demonstrate that the proposed method outperforms traditional techniques in two significant aspects. First, it provides superior spectral separation of the intrinsic modes (IMF) of the signal, thereby enhancing decomposition accuracy. Second, it significantly reduced the number of shifting iterations, thereby alleviating the computational load. These advancements have led to a more accurate and efficient framework that is essential for analyzing nonlinear and nonstationary signals.

Funder

Japan International Cooperation Agency

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3