Affiliation:
1. Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
Abstract
The rolling element bearing is one of the most critical components in a machine. Vibration signals resulting from these bearings imply important bearing defect information related to the machinery faults. Any defect in a bearing may cause a certain vibration with specific frequencies and amplitudes depending on the nature of the defect. Therefore, the vibration analysis plays a key role for fault detection, diagnosis, and prognosis to reach the reliability of the machines. Although fast Fourier transform for time–frequency analysis is still widely used in industry, it cannot extract enough frequencies without enough samples. If the real frequency does not match fast Fourier transform frequency grid exactly, the spectrum is spreading mostly among neighboring frequency bins. To resolve this drawback, the recent proposed enhanced fast Fourier transform algorithm was reported to improve this situation. This article reviews and compares both fast Fourier transform and enhanced fast Fourier transform for vibration signal analysis in both simulation and practical work. The comparative results verify that the enhanced fast Fourier transform can provide a better solution than traditional fast Fourier transform.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献