Phase transitions and noise sensitivity on the Poisson space via stopping sets and decision trees

Author:

Last Günter1,Peccati Giovanni2,Yogeshwaran D.3

Affiliation:

1. Institute for Stochastics Karlsruhe Institute of Technology Karlsruhe Germany

2. Department of Mathematics (DMATH) Luxembourg University Luxembourg

3. Theoretical Statistics and Mathematics Unit Indian Statistical Institute Bangalore India

Abstract

AbstractProofs of sharp phase transition and noise sensitivity in percolation have been significantly simplified by the use of randomized algorithms, via the OSSS inequality (proved by O'Donnell et al. and the Schramm–Steif inequality for the Fourier‐Walsh coefficients of functions defined on the Boolean hypercube. In this article, we prove intrinsic versions of the OSSS and Schramm–Steif inequalities for functionals of a general Poisson process, and apply these new estimates to deduce sufficient conditions—expressed in terms of randomized stopping sets—yielding sharp phase transitions, quantitative noise sensitivity, exceptional times and bounds on critical windows for monotonic Boolean Poisson functions. Our analysis is based on a new general definition of “stopping set”, not requiring any topological property for the underlying measurable space, as well as on the new concept of a “continuous‐time decision tree”, for which we establish several fundamental properties. We apply our findings to the ‐percolation of the Poisson Boolean model and to the Poisson‐based confetti percolation with bounded random grains. In these two models, we reduce the proof of sharp phase transitions for percolation, and of noise sensitivity for crossing events, to the construction of suitable randomized stopping sets and the computation of one‐arm probabilities at criticality. This enables us to settle an open problem suggested by Ahlberg et al. (a special case of which was conjectured earlier by Ahlberg et al. on noise sensitivity of crossing events for the planar Poisson Boolean model with random balls whose radius distribution has finite ‐moments and also show the same for planar confetti percolation model with bounded random balls. We also prove that critical probability is for the planar confetti percolation model with bounded, ‐rotation invariant and reflection invariant random grains. Such a result was conjectured by Benjamini and Schramm in the case of fixed balls and proved by Müller, Hirsch and Ghosh and Roy in the case of balls, boxes and random boxes, respectively; our results contain all previous findings as special cases.

Publisher

Wiley

Subject

Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3