Zinc finger protein 330 regulates Ramie mosaic virus infection in the whitefly Bemisia tabaciMED

Author:

Peng Jing1ORCID,Gao Yang1,Shi Xiaobin1,Yang Chunxiao2,Xie Gang1,Tang Tao1ORCID,Wang Dongwei1,Zheng Limin1,Liu Yong1,Zhang Deyong1

Affiliation:

1. Institute of Plant Protection Hunan Academy of Agricultural Sciences Changsha China

2. State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources South China Agricultural University Guangzhou China

Abstract

AbstractBACKGROUNDThe whitefly, Bemisia tabaci (Gennadius) is one of the most economically important pests that cause serious damage to agricultural production by transmitting plant pathogenic viruses. Approximately 90% of the virus species transmitted by the whitefly are members of the genus begomovirus. Ramie mosaic virus (RaMoV) is a new bipartite begomovirus that causes severe damage to ramie and several other economic crops in China. In previous studies, we have demonstrated that RaMoV had no obvious direct or indirect effects on B. tabaci. However, whether B. tabaci affects RaMoV infection and the molecular mechanisms of their interaction remain unclear.RESULTSHere, we identified a zinc finger protein 330 (ZNF330) in B. tabaci MED interacted with the coat protein (CP) of RaMoV by the yeast two‐hybrid assay. Then the interaction between ZNF330 and RaMoV CP was further verified by glutathione S‐transferase (GST) pull‐down assay. The expression of ZNF330 gene was continuously induced after RaMoV infection. ZNF330 negatively regulated RaMoV replication in the B. tabaci MED. Furthermore, the longevity and fecundity of RaMoV‐infected female adults were significantly decreased after silencing of ZNF330.CONCLUSIONSOur results indicated that the ZNF330 protein was involved in the negative regulation of RaMoV replication in the B. tabaci MED. High viral accumulation caused by ZNF330 silencing is detrimental to fecundity and longevity of the B. tabaci MED. These findings provided a new insight into identifying the binding partners in whitefly with viral CP and fully understanding the complex interactions between begomoviruses and their whitefly vector. © 2023 Society of Chemical Industry.

Funder

Agriculture Research System of China

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3