Predicting gully erosion susceptibility in South Africa by integrating literature directives with regional spatial data

Author:

Olivier George123ORCID,Van De Wiel Marco J.14,de Clercq Willem P.2

Affiliation:

1. Centre for Agroecology, Water and Resilience Coventry University Coventry UK

2. Stellenbosch University Water Institute Stellenbosch University Stellenbosch South Africa

3. Department of Earth Sciences Stellenbosch University Stellenbosch South Africa

4. College of Agriculture and Environmental Sciences UNISA Florida South Africa

Abstract

AbstractGully erosion has been identified as a severe land degradation process with environmental and socio‐economic consequences. Identifying areas susceptible to gully erosion will aid in developing strategies to inhibit future degradation. Various approaches have been implemented to predict and map gully erosion susceptibility but are mostly restricted to small geographical extents because of process limitations. Here, we introduce a novel method that predicts gully erosion susceptibility on a regional/national scale (1.22 million km2) by synthesising literature directives with a statistical approach. Findings from a literature review were used to extract physiographic properties associated with gully erosion that was conditioned to characterise susceptibility by using the Frequency Ratio model. The conditioned physiographic properties were aggregated by a weighted overlay procedure using an aggregation of controlling factors derived from the literature review as a weighting system. The gully susceptibility index (GSI) model was validated against a published gully inventory map (n = 163 019) and randomly generated 1‐km2 tessellation zones from which primary validation data were derived. Although uncertainties within the modelling procedure exist (e.g., gully site distribution, the spatial resolution of input data and determination of gully points), the validation shows that the GSI model is generally robust, identifying areas of contrasting susceptibilities. Furthermore, findings converge with other susceptibility metrics, which have been derived by different methodologies. Because empirical gully erosion research has been conducted worldwide, this model could be applied to regional‐scale gully susceptibility modelling assessments (as a solitary method or combined with primary data) in other parts of the world. Additionally, the GSI model can be adopted to model environmental change scenarios.

Funder

Coventry University

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3