Novel Machine Learning Approaches for Modelling the Gully Erosion Susceptibility

Author:

Arabameri Alireza,Asadi Nalivan OmidORCID,Chandra Pal SubodhORCID,Chakrabortty RabinORCID,Saha AsishORCID,Lee SaroORCID,Pradhan BiswajeetORCID,Tien Bui DieuORCID

Abstract

The extreme form of land degradation caused by the formation of gullies is a major challenge for the sustainability of land resources. This problem is more vulnerable in the arid and semi-arid environment and associated damage to agriculture and allied economic activities. Appropriate modeling of such erosion is therefore needed with optimum accuracy for estimating vulnerable regions and taking appropriate initiatives. The Golestan Dam has faced an acute problem of gully erosion over the last decade and has adversely affected society. Here, the artificial neural network (ANN), general linear model (GLM), maximum entropy (MaxEnt), and support vector machine (SVM) machine learning algorithm with 90/10, 80/20, 70/30, 60/40, and 50/50 random partitioning of training and validation samples was selected purposively for estimating the gully erosion susceptibility. The main objective of this work was to predict the susceptible zone with the maximum possible accuracy. For this purpose, random partitioning approaches were implemented. For this purpose, 20 gully erosion conditioning factors were considered for predicting the susceptible areas by considering the multi-collinearity test. The variance inflation factor (VIF) and tolerance (TOL) limit were considered for multi-collinearity assessment for reducing the error of the models and increase the efficiency of the outcome. The ANN with 50/50 random partitioning of the sample is the most optimal model in this analysis. The area under curve (AUC) values of receiver operating characteristics (ROC) in ANN (50/50) for the training and validation data are 0.918 and 0.868, respectively. The importance of the causative factors was estimated with the help of the Jackknife test, which reveals that the most important factor is the topography position index (TPI). Apart from this, the prioritization of all predicted models was estimated taking into account the training and validation data set, which should help future researchers to select models from this perspective. This type of outcome should help planners and local stakeholders to implement appropriate land and water conservation measures.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3