Development of benzimidazole derivatives as efficient matrices for the analysis of acidic small‐molecule compounds using matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry in negative ion mode

Author:

Cen Xianyi1,Fang Yuhao1,Chen Zilong2,Zhu Xinhai2

Affiliation:

1. School of Chemistry Sun Yat‐sen University Guangzhou China

2. Instrumental Analysis & Research Center Sun Yat‐sen University Guangzhou China

Abstract

RationaleWith the development of matrix‐assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) in spatial localisation omics research on small molecules, the detection sensitivity of the matrix must increase. However, the types of matrices suitable for detecting acidic small molecules in (−) MALDI‐MS mode are very limited and are either not sensitive enough or difficult to obtain.MethodsMore than 10 commercially available benzimidazole and benzothiazole derivatives were selected as MALDI matrices in negative ion mode. MALDI‐MS analysis was performed on 38 acidic small molecules and mouse serum, and the matrix effects were compared with those of the common commercial matrices 9‐aminoacridine (9AA), 1,5‐naphthalenediamine (DAN) and 3‐aminoquinoline (3AQ). Moreover, the proton affinity (PA) of the selected potential matrix was calculated, and the relationships among the compound structure, PA value and matrix effect were discussed.ResultsIn (−) MALDI‐MS mode, a higher PA value generally indicates a better matrix effect. Amino‐substituted 2‐phenyl‐1H‐benzo[d]imidazole derivatives had well‐defined matrix effects on all analytes and were generally superior to the commonly used matrices 9AA, DAN and 3AQ. Among them, 2‐(4‐(dimethylamino‐phenyl)‐1H‐benzo[d]imidazole‐5‐amine (E‐4) has the best sensitivity and versatility for detecting different analytes and has the best ability to detect fatty acids in mouse serum; moreover, the limit of detection (LOD) of some analytes can reach as low as ng/L.ConclusionsCompared to 9AA, DAN and 3AQ, matrix E‐4 is more effective at detecting low‐molecular‐weight acidic compounds in (−) MALDI‐MS mode, with higher sensitivity and better versatility. In addition, there is a clear correlation between compound structure, PA and matrix effects, which provides a basis for designing more efficient matrices.

Funder

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3