Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis

Author:

Quanyang Wu1,Yao Huang1,Sicong Wang2,Linlin Qi1,Zewei Zhang3,Donghui Hou1,Hongjia Li3,Shijun Zhao1ORCID

Affiliation:

1. Department of Diagnostic Radiology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

2. Magnetic Resonance Imaging Research General Electric Healthcare (China) Beijing China

3. PET‐CT Center National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

AbstractBackgroundThe exceptional capabilities of artificial intelligence (AI) in extracting image information and processing complex models have led to its recognition across various medical fields. With the continuous evolution of AI technologies based on deep learning, particularly the advent of convolutional neural networks (CNNs), AI presents an expanded horizon of applications in lung cancer screening, including lung segmentation, nodule detection, false‐positive reduction, nodule classification, and prognosis.MethodologyThis review initially analyzes the current status of AI technologies. It then explores the applications of AI in lung cancer screening, including lung segmentation, nodule detection, and classification, and assesses the potential of AI in enhancing the sensitivity of nodule detection and reducing false‐positive rates. Finally, it addresses the challenges and future directions of AI in lung cancer screening.ResultsAI holds substantial prospects in lung cancer screening. It demonstrates significant potential in improving nodule detection sensitivity, reducing false‐positive rates, and classifying nodules, while also showing value in predicting nodule growth and pathological/genetic typing.ConclusionsAI offers a promising supportive approach to lung cancer screening, presenting considerable potential in enhancing nodule detection sensitivity, reducing false‐positive rates, and classifying nodules. However, the universality and interpretability of AI results need further enhancement. Future research should focus on the large‐scale validation of new deep learning‐based algorithms and multi‐center studies to improve the efficacy of AI in lung cancer screening.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3