Author:
Da-ano Ronrick,Andrade-Miranda Gustavo,Tankyevych Olena,Visvikis Dimitris,Conze Pierre-Henri,Rest Catherine Cheze Le
Abstract
AbstractProgrammed death-ligand 1 (PD-L1) expressions play a crucial role in guiding therapeutic interventions such as the use of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) in lung cancer. Conventional determination of PD-L1 status includes careful surgical or biopsied tumor specimens. These specimens are gathered through invasive procedures, representing a risk of difficulties and potential challenges in getting reliable and representative tissue samples. Using a single center cohort of 189 patients, our objective was to evaluate various fusion methods that used non-invasive computed tomography (CT) and $$^{18}$$
18
F-FDG positron emission tomography (PET) images as inputs to various deep learning models to automatically predict PD-L1 in non-small cell lung cancer (NSCLC). We compared three different architectures (ResNet, DenseNet, and EfficientNet) and considered different input data (CT only, PET only, PET/CT early fusion, PET/CT late fusion without as well as with partially and fully shared weights to determine the best model performance. Models were assessed utilizing areas under the receiver operating characteristic curves (AUCs) considering their 95% confidence intervals (CI). The fusion of PET and CT images as input yielded better performance for PD-L1 classification. The different data fusion schemes systematically outperformed their individual counterparts when used as input of the various deep models. Furthermore, early fusion consistently outperformed late fusion, probably as a result of its capacity to capture more complicated patterns by merging PET and CT derived content at a lower level. When we looked more closely at the effects of weight sharing in late fusion architectures, we discovered that while it might boost model stability, it did not always result in better results. This suggests that although weight sharing could be beneficial when modality parameters are similar, the anatomical and metabolic information provided by CT and PET scans are too dissimilar to consistently lead to improved PD-L1 status predictions.
Funder
This work was partly funded by the ERA-Net CHIST-ERA grant [CHIST-ERA-19-XAI-007] long term challenges in ICT project INFORM
Publisher
Springer Science and Business Media LLC