Moisture‐Thermal Stable, Superhydrophilic Alumina‐Based Ceramics Fabricated by a Selective Laser Sintering 3D Printing Strategy for Solar Steam Generation

Author:

Wu Zhenhua1,Sun Dong12,Shi Congcan1,Chen Shuang1,Tang Sihan1,Li Yike1,Yan Chunze1,Shi Yusheng1,Su Bin1ORCID

Affiliation:

1. State Key Laboratory of Material Processing and Die & Mold Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China

2. Wuhan United Imaging Healthcare Surgical Technology Co., Ltd No. 99 Gaokeyuan Rd., Wuhan East Lake Hi‐tech Development Zone Wuhan Hubei 430206 P. R. China

Abstract

AbstractThe solar‐driven interface evaporation is one of the most promising technologies for desalination and wastewater purification. However, in the ebb and flow of the tide, water absorbed in the hydrophilic evaporator bottom would significantly change, leading to the shape deformation of the system and further failure of solar steam generation. Here it is reported that the moisture‐thermal stable and superhydrophilic alumina‐based ceramics can be fabricated by a selective laser sintering (SLS) 3D printing strategy. The printed alumina‐based ceramics possess superhydrophilicity. Along the side surface of the printed sample, a 5 µL water droplet can be fast absorbed in 14 ms. Most importantly, they can maintain stable and high evaporation efficiency even after being dried out for ten times, demonstrating the excellent physical resistance to continuous moisture‐thermal transition. Finally, the “I‐shaped” evaporators are printed with salt‐resistant ability, which can maintain a steady high evaporation efficiency in seawater and 20 wt% brine for long‐term steam generation process. The moisture‐thermal stable alumina‐based ceramics prepared in this work will provide inspiration for stable solar steam generation materials, and expand the development of 3D printing functional materials.

Funder

Huazhong University of Science and Technology

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3