Achieving High‐Quality Perovskite Films with Guanidine‐Based Additives for Efficient and Stable Methylammonium‐Free Perovskite Solar Cells

Author:

Zhou Wenwu1,Tai Shuya2,Li Yi1,Fu Huiting1,Zheng Qingdong1ORCID

Affiliation:

1. State Key Laboratory of Coordination Chemistry College of Engineering and Applied Sciences Nanjing University Nanjing 210023 China

2. School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China

Abstract

AbstractPower conversion efficiencies (PCEs) of the methylammonium‐free (MA‐free) perovskite solar cells (PSCs) are constantly lagging behind those of the most extensively researched triple cation mixed PSCs due to their subpar perovskite films. Here, two guanidine‐based passivation agents are proposed, that are, sulfaguanidine (S‐Gua) and 1‐acetylguanidine (A‐Gua) that can be applied to optimize the film quality of MA‐free perovskite for minimizing the efficiency discrepancy between the two types of PSCs. Through strong coordination with Pb2+ and hydrogen bonding with formamidinium (FA+), the two passivation additives can reduce bulk defects and suppress non‐radiative recombination, which in turn enhance the charge extraction and transfer efficiency. Consequently, the S‐Gua‐ and A‐Gua‐treated devices achieve PCEs of 24.34% and 23.77%, respectively. Both PCEs are greater than that of the control device (23.03%), and the 24.34% PCE is comparable with that of the best MA‐free inverted PSCs with narrower bandgaps. Moreover, the S‐Gua‐treated devices maintain 89.3% and 82.0% of their initial PCEs after aging for 800 h and heating (85 °C) for 340 h in ambient air without any encapsulation, respectively. This work offers comprehensive insights into the use of guanidine‐based additives to achieve high‐quality perovskite films and subsequently state‐of‐the‐art MA‐free PSCs.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3