Affiliation:
1. SUSTech Energy Institute for Carbon Neutrality Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 China
Abstract
AbstractStability and scalability are essential and urgent requirements for the commercialization of perovskite solar cells (PSCs), which are retarded by the non‐ideal interface leading to non‐radiative recombination and degradation. Extensive efforts are devoted to reducing the defects at the perovskite surface. However, the effects of the buried interface on the degradation and non‐radiative recombination need to be further investigated. Herein, an omnibearing strategy to modify buried and top surfaces of perovskite film to reduce interfacial defects, by incorporating aluminum oxide (Al2O3) as a dielectric layer and growth scaffolds (buried surface) and phenethylammonium bromide as a passivation layer (buried and top surfaces), is demonstrated. Consequently, the open‐circuit voltage is extensively boosted from 1.02 to 1.14 V with the incorporation of Al2O3 filling the voids between grains, resulting in dense morphology of buried interface and reduced recombination centers. Finally, the impressive efficiencies of 23.1% (0.1 cm2) and 22.4% (1 cm2) are achieved with superior stability, which remain 96% (0.1 cm2) and 89% (1 cm2) of its initial performance after 1200 (0.1 cm2) and 2500 h (1 cm2) illumination, respectively. The dual modification provides a universal method to reduce interfacial defects, revealing a promising prospect in developing high‐performance PSCs and modules.
Funder
National Natural Science Foundation of China
Southern University of Science and Technology
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献