Affiliation:
1. Biomedical Engineering College of Engineering Texas A&M University College Station TX 77843 USA
2. School of Biosciences and Bioengineering Indian Institute of Technology Mandi, Kamand Mandi Himachal Pradesh 175075 India
3. Genetics and Genomics Texas A&M University College Station TX 77843 USA
Abstract
AbstractElectronic skin (E‐skin) that can mimic the flexibility and stretchability of human skin with sensing capabilities, holds transformative potential in robotics, wearable technology, and healthcare. However, developing E‐skin poses significant challenges such as creating durable materials with skin‐like flexibility, integrating biosensing abilities, and using advanced fabrication techniques for wearable or implantable applications. To overcome these hurdles, a 3D‐printed electronic skin utilizing a novel class of nanoengineered hydrogels with tunable electronic and thermal biosensing capabilities is fabricated. This methodology takes advantage of the shear–thinning behavior in hydrogel precursors, allowing to construct intricate 2D and 3D electronic structures. The elasticity of skin using triple crosslinking in a robust fungal exopolysaccharide, and pullulan is simulated, while defect‐rich 2D molybdenum disulfide (MoS2) nanoassemblies ensure high electrical conductivity. The addition of polydopamine nanoparticles enhances adhesion to wet tissue. The hydrogel exhibits outstanding flexibility, stretchability, adhesion, moldability, and electrical conductivity. A distinctive feature of this technology is the precise detection of dynamic changes in strain, pressure, and temperature. As a human motion tracker, phonatory‐recognition platform, flexible touchpad, and thermometer, this technology represents a breakthrough in flexible wearable skins and holds transformative potential for the future of robotics and human‐machine interfaces.
Funder
National Institute of Biomedical Imaging and Bioengineering
Congressionally Directed Medical Research Programs
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献