Affiliation:
1. Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
2. Shandong Energy Institute Qingdao 266101 China
3. Qingdao New Energy Shandong Laboratory Qingdao 266101 China
4. School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractIn situ polymerization technology is expected to empower the next generation high specific energy lithium batteries with high safety and excellent cycling performance. Nevertheless, the large‐scale commercial applications of most reported in situ polymer electrolytes are still full of challenges. Owing to the severe parasitic reactions caused by residual monomers, additional initiators and oligomers, lithium batteries using in situ polymer electrolytes often demonstrate limited specific capacity, poor cycling performance, and insufficient rate capability. However, this issue has not received adequate attention in previous reports. Furthermore, the design and evaluation of in situ polymer electrolytes still lack effective guidance and unified standards. Herein, the development history of in situ polymer electrolytes are systematically reviewed and critically disclose the great challenges. Then, from the aspects of monomers, initiators, separators, manufacturing technologies, safety and cycle life evaluation, unprecedentedly a new paradigm is provided for upgrading the in situ polymerization technology inside lithium batteries. It is hoped the novel paradigm will prompt much more insightful studies, expediting the commercialization of in situ polymerization technology in lithium batteries.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献