Controllable In situ Polymerization of 1,3‐Dioxolane via Sustained‐Release Effect for Solid‐State Lithium Metal Batteries

Author:

Liu Sucheng1,Wu Boyong1,Huang Song2,Lin Zitian1,Song Huiyu1,Du Li1,Liang Zhenxing1,Cui Zhiming1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China

2. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

Abstract

AbstractIn situ formed poly(1,3‐dioxolane) (PDOL) electrolytes are of great interest due to the facile process and the improved interface contact. However, the practical application of in situ PDOL electrolytes is still plagued by fast solidification time (liquid state) and poor high‐voltage stability (solid state). Herein, the slow‐release carriers triglycidyl isocyanurate (TGIC), which play dual roles as initiator sustained‐release and network confinement, can tune DOL curing time and cathode/electrolyte interface chemistry is demonstrated. Specifically, the electronegative C≐O and epoxy groups in TGIC have an affinity with BF3, the decomposition product of lithium bis(oxalate)borate (LiDFOB), delaying BF3 protonation reaction and thus extending DOL solidification time. In addition, the epoxy groups in TGIC serve as crosslinking sites to form in situ crosslinked polymer electrolytes (TPDOL@FEC). The corresponding network structure suppresses the contact reaction between high‐fluidity organic components and cathodes, generating a uniform and thin cathode electrolyte interface layer. As a result, the TPDOL@FEC precursor solution can remain its liquid state even after resting 24 h at room temperature. The assembled LiNi0.6Co0.2Mn0.2O2||TPDOL@FEC||Li cells display an impressive capacity retention of 91.5% after 100 cycles at 4.4 V (0.5 C). This study is expected to be a leap in the pursuit of practically feasible in situ formed PDOL electrolytes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3