Designed Multifunctional Spider Silk Enabled by Genetically Encoded Click Chemistry

Author:

Jiang Bojing12ORCID,Tan Sin Yen1,Fang Shiyu1,Feng Xiaohan1,Park Byung Min13,Fok Hong Kiu Francis1,Yang Zhongguang14,Wang Ri1,Kou Songzi5,Wu Angela Ruohao1678,Sun Fei15910ORCID

Affiliation:

1. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China

2. Department of Energy, Environmental and Chemical Engineering Washington University in St. Louis Saint Louis MO 63130 USA

3. Department of Imaging Physics Delft University of Technology Delft 2628 CD The Netherlands

4. SPES Tech Limited New Territories Hong Kong SAR China

5. Greater Bay Biomedical InnoCenter Shenzhen Bay Laboratory Shenzhen 518036 China

6. Division of Life Science The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China

7. Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China

8. State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China

9. Biomedical Research Institute Shenzhen-Peking University–The Hong Kong University of Science and Technology Medical Center Shenzhen 518036 China

10. HKUST Shenzhen Research Institute Shenzhen 518057 China

Abstract

AbstractSpider silk is recognized for its exceptional mechanical properties and biocompatibility, making it a versatile platform for developing functional materials. In this study, a modular functionalization strategy for recombinant spider silk is presented using SpyTag/SpyCatcher chemistry, a prototype of genetically encoded click chemistry. The approach involves AlphaFold2‐aided design of SpyTagged spider silk coupled with bacterial expression and biomimetic spinning, enabling the decoration of silk with various SpyCatcher‐fusion motifs, such as fluorescent proteins, enzymes, and cell‐binding ligands. The silk threads can be coated with a silica layer using silicatein, an enzyme for silicification, resulting in a hybrid inorganic–organic 1D material. The threads installed with RGD or laminin cell‐binding ligands lead to enhanced endothelial cell attachment and proliferation. These findings demonstrate a straightforward yet powerful approach to 1D protein materials.

Funder

Ministry of Science and Technology

Natural Science Foundation of Guangdong Province

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3