Perovskite‐Oxide‐Based Ferroelectric Synapses Integrated on Silicon

Author:

Zheng Ningchong1,Zang Yipeng2,Li Jiayi13,Shen Cong1,Jiao Peijie1,Zhang Lunqiang1,Wang He4,Han Lu1,Liu Yuwei1,Ding Wenjuan1,Yang Xinrui1,Nian Leyan5,Ma Jianan1,Jiang Xingyu1,Yin Yuewei4,Xia Yidong1,Deng Yu1,Wu Di1,Li Xiaoguang4,Pan Xiaoqing6,Nie Yuefeng1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures Jiangsu Key Laboratory of Artificial Functional Materials College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

2. Anhui Key Laboratory of Magnetic Functional Materials and Devices School of Materials Science and Engineering Anhui University Hefei 230601 China

3. Department of Mechanical Engineering The University of Hong Kong Pokfulam Road Hong Kong 999077 China

4. Hefei National Research Center for Physical Sciences at the Microscale Department of Physics and CAS Key Laboratory of Strongly‐Coupled Quantum Matter Physics University of Science and Technology of China Hefei 230026 China

5. Suzhou Laboratory Suzhou 215125 China

6. Department of Chemical Engineering and Materials Science and Department of Physics and Astronomy University of California, Irvine 916 Engineering Tower Irvine CA 92697 USA

Abstract

AbstractPerovskite‐oxide‐based ferroelectric tunnel junctions (FTJs) hold great potential for applications in non‐volatile memory and neuromorphic computing due to their unique properties. However, the challenges in synthesizing high crystalline quality perovskite oxides directly on silicon wafer limit the applications of these FTJs in conventional Si‐based integrated circuits, let alone the neural networks. Herein, perovskite oxide FTJs with an ON/OFF ratio up to 1.2×106, writing/erasing speed down to 1 nanosecond, and cycling endurance (>106) are achieved by integrating ultrathin freestanding ferroelectric perovskite oxide membranes directly on silicon wafers using a wet‐transfer method. Moreover, synapses based on these FTJs exhibit long‐term plasticity. For handwritten digits recognition task, the convolutional neural network (CNN) simulation is implemented achieving a recognition accuracy up to 98.9% based on the experimental performance, close to the result of 99.2% by software‐floating‐point‐based CNN. This work sheds light on the integration of ferroelectric perovskite oxides directly on silicon for high‐performance FTJ‐based non‐volatile memory and synaptic devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3