High‐Pressure Synthesis and Thermal Conductivity of Semimetallic θ‐Tantalum Nitride

Author:

Lee Hwijong1ORCID,Zhou Yuanyuan2,Jung Sungyeb34,Li Hongze1,Cheng Zhe5,He Jiaming1,Chen Jie1,Sokalski Peter2,Dolocan Andrei1,Gearba‐Dolocan Raluca1,Matthews Kevin C.1,Giustino Feliciano34,Zhou Jianshi12,Shi Li12ORCID

Affiliation:

1. Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin Austin Texas 78712 USA

2. Walker Department of Mechanical Engineering The University of Texas at Austin Austin Texas 78712 USA

3. Oden Institute for Computational Engineering and Sciences The University of Texas at Austin Austin Texas 78712 USA

4. Department of Physics The University of Texas at Austin Austin Texas 78712 USA

5. Department of Materials Science and Engineering and Materials Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

Abstract

AbstractThe lattice thermal conductivity (κph) of metals and semimetals is limited by phonon‐phonon scattering at high temperatures and by electron‐phonon scattering at low temperatures or in some systems with weak phonon‐phonon scattering. Following the demonstration of a phonon band engineering approach to achieve an unusually high κph in semiconducting cubic‐boron arsenide (c‐BAs), recent theories have predicted ultrahigh κph of the semimetal tantalum nitride in the θ‐phase (θ‐TaN) with hexagonal tungsten carbide (WC) structure due to the combination of a small electron density of states near the Fermi level and a large phonon band gap, which suppress electron‐phonon and three‐phonon scattering, respectively. Here, measurements on the thermal and electrical transport properties of polycrystalline θ‐TaN converted from the ε phase via high‐pressure synthesis are reported. The measured thermal conductivity of the θ‐TaN samples shows weak temperature dependence above 200 K and reaches up to 90 Wm−1K−1, one order of magnitude higher than values reported for polycrystalline ε‐TaN and δ‐TaN thin films. These results agree with theoretical calculations that account for phonon scattering by 100 nm‐level grains and suggest κph increase above the 249 Wm−1 K−1 value predicted for single‐crystal WC when the grain size of θ‐TaN is increased above 400 nm.

Funder

National Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3