Reducing Nonradiative Losses of Air‐Processed Perovskite Films via Interface Modification for Bright and Efficient Light Emitting Diodes

Author:

Li Wan1,Li Tianxiang1,Tong Yu1ORCID,Li Yaochen1,Wang Hao1,Qi Heng1,Wang Kun2ORCID,Wang Hongqiang1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) Xi'an 710072 P. R. China

2. School of Microelectronics Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractDeveloping ambient‐air fabrication strategy is desirable for lowering down the fabrication cost of perovskite light emitting diodes (LEDs) and further promoting their broad applications. However, ambient humidity usually leads to undesirable interface and perovskite film quality, causing severe nonradiative losses and unsatisfactory device performance. In this work, an effective strategy to solve this problem and remarkably enhance the performance of perovskite LEDs is reported. The study reveals that the humidity‐induced aggregation of self‐assembled monolayer (SAM) in humid air can be eliminated by introducing a poly[(9,9‐bis(3′‐((N,N‐dimethyl)‐N‐ethylammonium)‐ propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] dibromide (PFNBr) as an interface modifier, which reduces the interfacial defects and improves the perovskite crystallinity. The interaction between PFNBr and perovskite can further passivate the defects and suppress trap‐assisted nonradiative processes, which significantly enhances the photoluminescence efficiency of the ambient‐processed perovskite films. Furthermore, the energy level alignment is optimized and the hole injection is improved, thus resulting in more efficient and balanced charge injection. As a result, the green perovskite LEDs achieve a high external quantum efficiency of 12.06% and luminance of 22121 cd m−2, representing the record values for the perovskite LEDs processed under such ambient‐air condition, in accompany with an improved device stability.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3