In Situ Construction of High‐Density Solid Electrolyte Interphase from MOFs for Advanced Zn Metal Anodes

Author:

Xiong Dengyi1,Yang Li2,Cao Ziwei1,Li Fengrong3,Deng Wentao1,Hu Jiugang1,Hou Hongshuai1,Zou Guoqiang1,Ji Xiaobo14ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha 410083 China

2. Hunan University of Technology and Business Changsha Hunan 410205 China

3. College of Materials Science and Engineering Changsha University of Science and Technology Changsha 410114 China

4. School of Material Science & Engineering Zhengzhou University Zhengzhou 450001 China

Abstract

AbstractAqueous zinc anode has been re‐evaluated due to the superiority in tackling safety and cost concerns. However, the limited lifespan originating from Zn dendritic and side reactions largely hamper commercial development. Currently, the coating prepared by simple slurry mixing is leaky and ineffectively isolate sulfate and water. Herein, inspired by the DFT calculations and the easy hydrolysis characteristic of MIL‐125 (Ti), an in‐situ grown high‐dense TiO2‐x solid electrolyte interphase (HDSEI) with rich oxygen vacancies is successfully constructed in an aqueous electrolyte, in which the oxygen vacancies not only strengthen the hydrogen binding force thereby inhibiting the hydrogen precipitation by‐reaction, but also reduce the migration energy barrier of zinc ions and enhance the mechanical properties. Profiting from the HDSEI, symmetric Zn cells survive up to remarkable 4200 h at 1 mA cm−2, nearly 42‐times than that of bare Zn anodes. In situ optical microscopy clearly reveals that the in situ grown HDSEI homogenizes the zinc deposition process, while bare zinc without HDSEI shows significant dendrites, confirming the protective nature of HDSEI. Furthermore, full Zn ion capacitors can deliver excellent electrochemical performance, providing a feasible in situ approach to construct HDSEI to implement dendrite‐free metal anodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3