Emerging strategies for the improvement of modifications in aqueous rechargeable zinc–iodine batteries: Cathode, anode, separator, and electrolyte

Author:

Zhao Yuwei1,Chen Xinyu1,Guo Weina1,Zha Chenyang12ORCID

Affiliation:

1. Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing China

2. Institute of Applied Physics and Materials Engineering (IAPME) University of Macau Taipa Macau SAR China

Abstract

AbstractAqueous rechargeable zinc–iodine batteries have gained traction as a promising solution due to their suitable theoretical energy density, cost‐effectiveness, eco‐friendliness, and safety features. However, challenges such as the polyiodide shuttle effect, low iodine cathode conductivity, zinc anode dendritic growth, and the requirement for efficient separators and electrolytes hinder their commercial prospects. Hence, this review highlights recent progress in refining the core optimization strategies of zinc–iodine batteries, focusing on enhancements to the cathode, anode, separator, and electrolyte. Cathode improvements involve the addition of inorganic, organic, and hybrid materials to counteract the shuttle effect and boost redox kinetics, where these functional materials also are applied in anode modifications to curb dendritic growth and enhance cycling stability. Meanwhile, cell separator design approaches that effectively block polyiodide shuttle while promoting uniform zinc deposition are also discussed, while electrolyte innovations target zinc corrosion and polyiodide dissolution. Ultimately, the review aims to map out a strategy for developing zinc–iodine batteries that are efficient, safe, and economical, aligning with the demands of contemporary energy storage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3