Steering Interfacial Renovation with Highly Electronegative Cl Modulated Trinity Effect for Exceptional Durable Zinc Anode

Author:

Zhao Qiwen1,Liu Wen1,Ni Xuyan1,Yu Huaming1,Zhang Chunxiao1,Wang Bin2,Jiang Liangliang3,He Hanwei1,Chen Yuejiao1ORCID,Chen Libao14

Affiliation:

1. State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 P. R. China

2. GP Technology & Innovation Limited Hong Kong 999077 P. R. China

3. Department of Chemical and Petroleum Engineering the University of Calgary Calgary Alberta T2N 1N4 Canada

4. National Energy Metal Resources and New Materials Key Laboratory Central South University Changsha 410083 P. R. China

Abstract

AbstractThe poor anode/electrolyte interface triggered by abysmal dendritic growth and hydrogen evolution reactions (HER) hinders the development of aqueous zinc‐ion batteries (AZIBs). Here, a highly efficient electrolyte is formulated with sucralose (Sucral) additive to refresh solvated structure and steer interfacial renovation, for building highly electronegative Cl‐modulated trinity effect in the bulk‐interface between electrolyte and electrode. Experiment results and theoretical studies jointly reveal that Sucral with highly zincophilic and hydrophilic hydroxyl groups can remodel primary Zn2+ solvation shell and interrupt strong H‐bond network from H2O molecules, thus boosting fast de‐solvation and restricting undesirable HER. Simultaneously, three highly electronegative chlorides in the adsorbed Sucral possessing hydrophobic features can enable a H2O‐poor electric double‐layer (EDL), thus remodeling the Zn surface against corrosion. Additionally, it realizes preferential exposure of the Zn (002) plane for helping uniform interfacial deposition. The synergy of the above factors achieves a prolonged lifespan of 3000 h (1.0 mA cm−2, 1.0 mAh cm−2), much better than that with Sucrose (Suc) electrolyte. The Zn//V2O5 full cell at 5 A g−1 also maintains enhanced stability of 1500 cycles with 160 mAh g−1.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3