Does Water‐in‐Salt Electrolyte Subdue Issues of Zn Batteries?

Author:

Khan Ziyauddin1ORCID,Kumar Divyaratan1ORCID,Crispin Xavier1ORCID

Affiliation:

1. Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 60174 Sweden

Abstract

AbstractZn‐metal batteries (ZnBs) are safe and sustainable because of their operability in aqueous electrolytes, abundance of Zn, and recyclability. However, the thermodynamic instability of Zn metal in aqueous electrolytes is a major bottleneck for its commercialization. As such, Zn deposition (Zn2+ → Zn(s)) is continuously accompanied by the hydrogen evolution reaction (HER) (2H+ → H2) and dendritic growth that further accentuate the HER. Consequently, the local pH around the Zn electrode increases and promotes the formation of inactive and/or poorly conductive Zn passivation species (Zn + 2H2O → Zn(OH)2 + H2) on the Zn. This aggravates the consumption of Zn and electrolyte and degrades the performance of ZnB. To propel HER beyond its thermodynamic potential (0 V vs standard hydrogen electrode (SHE) at pH 0), the concept of water‐in‐salt‐electrolyte (WISE) has been employed in ZnBs. Since the publication of the first article on WISE for ZnB in 2016, this research area has progressed continuously. Here, an overview and discussion on this promising research direction for accelerating the maturity of ZnBs is provided. The review briefly describes the current issues with conventional aqueous electrolyte in ZnBs, including a historic overview and basic understanding of WISE. Furthermore, the application scenarios of WISE in ZnBs are detailed, with the description of various key mechanisms (e.g., side reactions, Zn electrodeposition, anions or cations intercalation in metal oxide or graphite, and ion transport at low temperature).

Funder

Energimyndigheten

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3