On‐Chip Tightly Confined Guiding and Splitting of Surface Acoustic Waves Using Line Defects in Phononic Crystals

Author:

Gao Feng123ORCID,Benchabane Sarah4,Bermak Amine2,Dong Shurong3,Khelif Abdelkrim4

Affiliation:

1. ZJU‐Hangzhou Global Scientific and Technological Innovation Center Zhejiang University No. 733, Jianshesan Road, Xiaoshan Distrcit Hangzhou 311200 China

2. College of Science and Engineering Hamad Bin Khalifa University Education City Doha PO BOX 24404 Qatar

3. College of Information Science & Electronic Engineering Zhejiang University No. 38, Zheda Road, Xihu District Hangzhou 310027 China

4. Institut FEMTO‐ST CNRS Université de Bourgogne Franche‐Comté 15B Avenue des Montboucons 25000 Besançon Cedex France

Abstract

AbstractPhononic crystals (PnCs) exhibit acoustic properties that are not usually found in natural materials, which leads to the possibility of new devices for the complex manipulation of acoustic waves. In this article, a micron‐scale phononic waveguide constructed by line defects in PnCs to achieve on‐chip, tightly confined guiding, bending, and splitting of surface acoustic waves (SAWs) is reported. The PnC is made of a square lattice of periodic nickel pillars on a piezoelectric substrate. The PnC lattice constant, pillar diameter, and pillar height are set to 10, 7.5, and 3.2 µm, respectively, leading to a complete bandgap centered at 195 MHz. Interdigitated transducers are monolithically integrated on the same substrate for SAW excitation. The guiding, bending, and splitting of SAWs in the phononic waveguide are experimentally observed through measurement of the out‐of‐plane displacement fields using a scanning optical interferometer. The combination of destructive interference due to the Bragg bandgap and the interaction of the propagating wave with the pillars around the channel results in a tight confinement of the displacement field. The proposed phononic waveguides demonstrate the feasibility of precise local manipulation of SAW that is essential for emerging frontier applications, notably for phonon‐based classical and quantum information processing.

Funder

European Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3