Atomic‐Thin 2D Copper Sulfide Nanocrystals with over 94% Photothermal Conversion Efficiency as Superior NIR‐II Photoacoustic Agents

Author:

Su Mengyao1,Wu Zhujun2,Yan Tingjun1,Li Naiqing3,Li Xinyuan4,Hou Tailei3,Liu Jia3,Zhang Chunhuan2,Zhu Cheng2,Wang Zhimin2,Zhang Jiatao14ORCID

Affiliation:

1. School of Medical Technology Beijing Institute of Technology Beijing 100081 China

2. Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China

3. School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China

4. MIIT Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractExploring photothermal nanomaterials is essential for new energy and biomedical applications; however, preparing materials with intense absorption, highly efficient light‐to‐heat conversion, and enhanced photostability still faces the enduring challenge. Herein, the study synthesizes atomic‐thin (≈1.6 nm) 2D copper sulfide (AT‐CuS) plasmonic nanocrystals and find its extraordinary photothermal conversion efficiency (PCE) reaching up to 94.3% at the second near‐infrared (NIR‐II) window. Photophysical mechanism studies reveal that the strong localized surface plasmon resonance (LSPR) and out‐of‐plane size effect of AT‐CuS induce strong optical absorption and non‐equilibrium carrier scattering, resulting in a significant carrier‐phonon coupling (7.18 × 1017 J K−1 s−1 m−3), ultimately enhancing the heat generation. Such a photothermal nanomaterial demonstrates at leastmes stronger NIR‐II photoacoustic (PA) signal intensity than that of most commonly used miniature gold nanorods, together with greater biocompatibility and photo‐/thermal‐stability, enabling noninvasive PA imaging of brain microvascular in living animals. This work provides an insight into the rational exploration of superb NIR‐II photothermal and photoacoustic agents for future practical utilizations.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Beijing Municipal Natural Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3