A Robust and Adhesive Hydrogel Enables Interfacial Coupling for Continuous Temperature Monitoring

Author:

Hao Sanwei1ORCID,Dai Rengang1,Fu Qingjin1,Wang Yicong1,Zhang Xinrui1,li Hu1,liu Xidie1,Yang Jun12ORCID

Affiliation:

1. Beijing Key Laboratory of Lignocellulosic Chemistry College of Materials Science and Technology Beijing Forestry University Beijing 100083 China

2. State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China

Abstract

AbstractContinuous temperature monitoring by flexible hydrogel‐based electronics achieves rapid advances, overcoming the drawbacks of rigid and unportable thermocouples. However, an open question is whether and how the thermosensitive hydrogel designing can prevent mechanical mismatching between devices and skin‐tissues and reduces interfacial failure. Herein, a versatile hydrogel‐based thermistor epidermal sensor (HTES) paradigm is engineered consisting of thermosensitive and self‐adhesive function layer (PEST) in tandem with a surface spraying Ag interdigital electrode. Leveraging the advantage of catechol chemistry inspired tannic acid‐coated cellulose nanocrystals, the resultant PEST achieves the adhesion‐cohesion equilibrium along with superior thermosensitivity. The assembled HTES thereby yields unprecedented features of superior thermosensitivity (TCR = 1.43% °C−1), exceptional mechanical integrity (hammering 200 cycles, current variation <9%), impressive interfacial compatibility (adhesion strength, 25 kPa), and environmental stability (thermosensation retention of 98% over 5 days). By in‐situ microstructure observation, the unique geometrical synchronization of HTES with arbitrary curvilinear surfaces (e.g., sphere, cone, and saddle) stemming from elastic dissipation and discrete rupture of the adhesive fibrillar bridges is validated, affording competitive advantages than that of the state‐of‐the‐art thermistor electronics for alleviating the interfacial deterioration, which dramatically inspires advanced HTES design strategies and paves the way for commercialization of attachable thermistor electronics.

Funder

Fundamental Research Funds for the Central Universities

State Key Laboratory of Pulp and Paper Engineering

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3