Affiliation:
1. School of Physics and Electronics Hunan University Changsha 410082 China
Abstract
AbstractHow to realize uniform Li+ flow is the key to achieve even Li deposition for lithium metal batteries (LMBs). In this study, a concept of dynamic ion sieve is proposed to design the buffer layer nearby Li anode surface to regulate Li+ spatial arrangement by introducing tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide (TMPB) into the carbonate electrolyte. The buffer layer induced by TMP+ can adjust the velocity of arriving solvated Li+ that gives solvated Li+ sufficient time to redistribute and accumulate on Li anode surface, resulting in a uniform and higher concentrated Li+ flow. Besides, TFSI− can participate in the generation of inorganic component‐rich solid electrolyte interphase (SEI) with Li3N, which can facilitate the Li+ conductivity of SEI. Consequently, the stable and uniform Li deposition can be obtained, achieving the excellent cycling performance up to 1000 h at 0.5 mA cm−2 in the Li||Li symmetric cell. Besides, the Li||NCM622 full cell also possesses excellent cycling stability with a high‐capacity retention rate of 66.7% after 300 cycles.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献