Chelation Protection for Zinc Anode of Aqueous Batteries

Author:

Liu Ao1,Dong Xiaoyu1,Liu Youfa1,Peng Cong1,Huang Yan2ORCID

Affiliation:

1. Department: School of Materials Science and Engineering & Flexible Printed Electronic Technology Center Institution: Haerbin Institute of Technology Shenzhen Address: Room 612, L Building, HIT campus

2. Department: School of Materials Science and Engineering & Flexible Printed Electronic Technology Center Institution: Haerbin Institute of Technology Shenzhen Address: Room 404, C Building, HIT campus

Abstract

AbstractThis mini‐review comprehensively outlines the latest advancements in protecting zinc anodes in zinc‐ion batteries (ZIBs) through chelation mechanisms. Chelation involves the coordination of ligands with Zn2+, offering promising strategies to address challenges such as dendrite formation and hydrogen evolution reactions. However, there is a lack of comprehensive and unified evaluation of chelation‘s protective effect on the zinc anode, which hinders a thorough assessment of chelation‘s effectiveness. Recent studies have demonstrated the excellent protective performance of chelation in altering solvation structures, modifying SEI structures, and selectively adsorbing species on the zinc anode. Furthermore, while chelation demonstrates significant benefits for the zinc anode, its impact on cathode materials must also be considered. Proper selection of chelation strengths and compatible cathode materials is essential for overall battery performance. Future research directions include exploring the effects of different ligands and coordination numbers on battery performance and extending chelation strategies to other secondary metal batteries. Understanding and optimizing chelation mechanisms are critical for advancing the development of high‐performance ZIBs and other metal‐ion battery technologies.

Funder

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3